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Several boundary integral techniques are available for the computation of the solution to 
Laplace’s equation in multi-connected domains. However, for cases where the domain is 
changing, such as incompressible, inviscid fluid flow with free surfaces, iterative methods are 
highly attractive. The paper describes one such formulation and tests it on circular and elliptic 
annuli. It is necessary to use interpolated quadrature points to maintain accuracy when 
regions of the annuli are thin. 0 1986 Academic Press, Inc. 

I. INTRODUCTION 

Various numerical techniques are available to compute solutions to elliptic par- 
tial differential equations. For specific equations, such as Laplace’s equation, the 
biharmonic equation and Helmholtz’s equation, boundary integral techniques have 
several advantages over standard finite-difference and finite-element techniques. 
Highly accurate solutions for even severely deformed geometries can be obtained 
easily by boundary integral techniques. For exterior problems, the far-field 
asymptotic boundary conditions are automatically satisfied. No special effort is 
required when the domain changes in time (or with some other independent 
parameter), since points on the boundary can be advanced in a straightforward 
fashion. In particular, generalized vortex methods, based on boundary integral 
techniques, have been used successfully to compute free surface motion of inviscid, 
incompressible fluid (Baker et al., 1980, 1982). 

Several other researchers, such as Longuet-Higgins and Cokelet (1976), and 
Pullin (1982), have also used boundary integral techniques to study free surface 
motion. They used costly direct matrix inversion techniques to solve the integral 
equations, which take 0(N3) operations to perform where N is the number of 
points that represent the boundary. In contrast, Baker et al. (1982) realized that a 
suitable choice of source or dipole distributions along the surface will lead to 
Fredholm integral equations of the second kind that may be solved iteratively in 
O(Z@) operations. In simply-connected domains, the solution to Laplace’s equation 
with Dirichlet boundary conditions may be found iteratively when a dipole dis- 
tribution along the boundary is used. In multi-connected domains, an external 
source contribution must be added to the dipole distribution along the boundary as 
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a representation for the velocity potential. This paper will describe how iterative 
techniques may be used to find both the source strength and the dipole distribution. 
Several test examples are solved numerically. In general, standard quadrature 
techniques provide accurate solutions to the boundary integral equations. However, 
when the multi-connected domain involves two non-intersecting surfaces that lie 
close together, interpolated quadrature techniques are used to solve the boundary 
integral equations accurately. 

One application of these results is to the study of accelerating thin fluid shells. 
Baker (1983) has shown that the motion may be determined from the solution of 
Laplace’s equation in a multi-connected domain with Dirichlet boundary con- 
ditions. Here the presence of the source term is crucial in determining correctly the 
dynamics of the motion. In some cases, it is known on other grounds that there is 
no flux across the surfaces and so no source term is necessary. This is relevant in 
studies of the classical Rayleigh-Taylor instability (Baker et al., 1980) and of the 
motion of water waves over variable bottom topography (Baker et al., 1982). 

In Section II, we start by considering Laplace’s equation exterior to a simply con- 
nected domain. This simple case contains the essential features of the application of 
boundary integral equations for potential problems in multi-connected domains. In 
Section III, we consider Laplace’s equation between two closed non-intersecting 
surfaces and finally, in Section IV, a numerical technique and results are presented. 

II. THE EXTERIOR PROBLEM 

Consider the region D exterior to a simply connected domain D with boundary 
dD. For convenience, the boundary will be assumed to have a continuous normal. 
Boundaries with corners introduce a slight modification in the mathematics (for 
details, see Jaswon and Symm, 1977). Suppose that the potential, 4, which satisfies 
Laplace’s equation in 6, is specified along i?D. In addition, the behavior of 4 far 
from aD must be specified. In three dimensions, a unique solution is determined by 
requiring that 4 decays algebraically far from aD. However, in two dimensions the 
situation is more complicated. A unique solution can be found if 4 is logarithmic or 
tends to a constant at infinity but not both (Kellogg, 1929). 

For simplicity of presentation, we shall assume that the potential is logarithmic 
at infinity if the geometry is two-dimensional. The other case is treated similarly. 
According to classical potential theory, 4 may then be expressed in terms of a 
source distribution 0 along i?D: 

4~) = i,, a(q) dp, 4) 4, PEbvaD, (2.1) 

where p and q are field points and g(p, q) is the Green’s function for Laplace’s 
equation in free-space. In particular, when p E aD, Eq. (2.1) constitutes a Fredholm 
equation of the first kind for the source strength 0 in terms of the specified potential 
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4. If collocation and numerical quadrature are used to solve Eq. (2.1), a matrix 
equation results which is usually solved by direct inversion techniques. We are not 
aware of any matrix splitting that leads to an iteration scheme that converges 
globally, that is, converges for any choice of aD. Once cr is determined, 4 can be 
evaluated in D via (2.1). 

Alternatively, as suggested by the form of a solution for an interior Dirichlet 
problem, we may seek to express 4 in terms of a dipole distribution p along aD. 
However, such a representation is not sufficient. A dipole distribution decays to 
zero at infinity, and a source term must be added in order to satisfy the condition 
there. The location of the source inside aD is arbitrary but for numerical com- 
putations it is best not to place it near aD. For convenience, the source may be con- 
sidered to be at the origin of the coordinate system. Thus 

d(P) = 6, P(4) g- (P9 4) 4 + A4,(P)> pdvaD, (2.2) 
4 

where n is the normal pointing into d and the normal derivative is taken with 
respect to q (hence the q subscript on n). The unit source potential +s(p) depends 
on the nature of aD and the spatial dimension. In particular, for a closed aD in two 
dimensions, 

$,(P) =; 1% IPI. (2.3) 

Clearly, equations for p and A must be sought. 
As p approaches aD along the normal, (2.2) takes on the limiting form 

4 P(4) $ (p&Q-+L 9(P) - A4,(P) = R(P), pEaD. (2.4) 
L?D 4 

Equation (2.4) has been written explicitly in the form of a Fredholm integral 
equation of the second kind for CL. The arbitrariness in A is only apparent in that 
the Fredholm alternative must be satisfied in order for (2.4) to have a solution p. As 
required by Fredholm theory, the eigenvalues I of the equation, 

ag 
21 1, Aq) an, (PY 4) dq - P(P) = 0 

must be known. Kellogg (1929) proves that the eigenvalues are distinct and real 
and they all satisfy II) >/ 1. In addition, A = 1 is an eigenvalue of geometric mul- 
tiplicity one with eigenvector p = C, a constant (Jaswon and Symm, 1977). This 
corresponds to a potential distribution 4 = C in D and 0 = 0 in b. 

Since (2.4) has a non-trivial solution when R = 0 there is no solution to (2.4) for 
R # 0 unless R satisfies the Fredholm alternative. Multiply (2.4) by a source dis- 
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tribution a(p) along aD and integrate around aD with respect to p. The result may 
be written as o(q) 

O(P) s (P, q) dp-2 
4 

R(P) 4~) dp. (2.6) 

In particular, if 0 is a nontrivial solution of the adjoint problem, 

s a(q) -$ (P, q) dq -2 dp) = 0 3 
dD P 

(2.7) 

then 

s R(P) O(P) dp = 0, (2.8) 
dD 

where the following relationship has been used: 

g( P7 4) = g(q, P). (2.9) 

Clearly, (2.8) is a necessary condition for p to exist. The fact that it is also a suf- 
ficient condition follows from the usual method of proof that establishes the 
Fredholm alternative (see Mikhlin, 1957). The Fredholm alternative also guaran- 
tees that there exists only one nontrivial CJ which satisfies (2.7) aside from a mul- 
tiplicative constant. 

Provided R satisfies (2.8), there is a solution ,U for (2.4) which is arbitrary to the 
addition of any constant ,ii. Fortunately, a constant ,G corresponds to a constant 
potential in D and zero potential in D. In most physical applications, such as 
incompressible, inviscid irotational fluid flow, it is Vb that is important and any 
constant ii may be ignored. 

Finally, note that condition (2.8) becomes, upon substitution for R from (2.4), 

A jaD 4,(p) 4~) dp = 1;, 4(p) O(P) dp, (2.10) 

which is an equation for A. Thus, a non-trivial B is determined from (2.7) and 
(2.10) is then used to determine A. Next (2.4) is solved for p with any additional 
constraint that eliminates the arbitrariness in p. For example, one may specify the 
value of p at a point on f3D: 

P(Po) = 0. (2.11) 

At first sight, Eqs. (2.4), (2.7) and (2.10) appear to introduce greater com- 
putational complexity than (2.1). However, both (2.4) and (2.7) may be solved 
iteratively. Let p(“)(p) be the nth iterative and obtain the next iterative from 

p(” + l’(p) = Tp’“‘( p) - Tpy PO) (2.12a) 
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~~(p)=2%U8(~)~(P,4)d4-2R(p). 
4 

As n --t co, ,u(“’ + p, the solution to (2.4) subject to (2.11). Similarly, an iteration 
procedure for (T may be used where for convenience the additional constraint, 

Ea; lO(P)I = 1, (2.13) 

is imposed to remove the arbitrary multiplicative constant in 0. The convergence of 
the iteration scheme follows from the global convergence of the Neumann series for 
both integral equations. A proof follows from the proof given in Baker et al. (1982) 
for the case of open periodic surfaces. In particular, for time dependent domains the 
iteration is very efficient since a good first guess is always available from infor- 
mation at the previous time value, and, if information from previous time levels is 
retained, extrapolation further improves the first guess. If the solution 4 to the two- 
dimensional Laplace’s equation is being sought in D subject to 4 tending to a con- 
stant at infinity, b,(p) = 1 must be used in place of (2.3) and the source distribution 
in (2.1) must be modified (Jawson and Symm, 1977). 

As shown in the simple case above, the Fredholm alternative lies at the heart of 
the application of dipole distributions to the solution of Laplace’s equation in 
multi-connected domains. In the next section, a more general multi-connected 
domain will be considered and then numerical results will be presented in the 
following section. 

III. THE ANNULAR PROBLEM 

Consider the multi-connected domain as shown schematically in Fig. 1. Domain 
D, lies between two closed, non-intersecting surfaces dD, and dD2 with t3D, enclos- 
ing CID,. The exterior domain d is composed of two parts, D3 internal to dD2 and 
D, external to i?D,. Once again, dD, and i?D, are assumed to have continuous nor- 
mals. 

To be specific and for convenience, suppose that a solution to the two-dimen- 
sional Laplace’s equation is sought in D, with Dirichlet boundary conditions 
imposed at c?D, and aD,. Following the procedure adopted in Section II the 
solution is expressed in terms of a source term and dipole distributions along i?D, 
and aD,; 

(3.1) 

Let dD, and aD, be parametrised in a counter-clockwise direction by (x,(e), yl(e)) 
and (x,(e), y,(e)), respectively. In free-space, the two-dimensional Green’s function 
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FIG. 1. Schematic showing the assumed notation for an annulus. 

is (l/471) log{ (x - xk)* + (y - y,)*}, where (x,, yk) locates the source point on iYDk. 
The normal derivative of the Green’s function evaluated at the kth surface has the 
form 

Kjk,(e 
, 

e,) =' XkJe'){Yj(e) - .hW> - Ykp(e'){xj(e)-xk(e')> 

27t {Xi(e)-xde'))*+ {Yj(e)-.Yk(e')l* ’ 
(3.2) 

where the subscript e denotes differentiation and the field point lies on the jth sur- 
face. 

The evaluation of (3.1) at i?D, and cYD, gives two coupled Fredholm integral 
equations for ,u~ and p2: 

A 1, pl(e’) K,,(e, e’) de’ + I 
I 

i;, 
2 

,u2(e’) K12(e, e’) de’ +q 

= dl(e) --$ log(x:(e) + y?(e)) (3.3a) 

A Ja, 
I 

p,(e’)K,,(e,e’)de’+l k, 
2 

p2(e’)K2,(e, e’)de’-y 

= b2(e) -2 log{xW + .dW (3.3b) 

where dr(e) and 4*(e) are the values imposed on 4 at aD, and 8D,, respectively. 
The origin of the coordinate system has been chosen to coincide with the location 
of the source point inside D, of strength A. Although 1= 1, it has been introduced 
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to facilitate the discussion on the existence of solutions for pI and pz and the global 
convergence of the Neumann series for the integral equations. 

When ;1= 1, pL1 =0 and p2 = C, a constant, are solutions to the homogeneous 
equations (dr = & = A = 0) corresponding to a potential distribution 4 = 0 in D 1 
and D,, q5= C in D,. Th is eigenvalue is closely associated to that in (2.5). 
According to Fredholm’s theorem of the alternative, (3.3) has a solution provided 

where rr and r2 satisfy the homogeneous, adjoint equations 

P r,(e’) Gll(e, e’) de’+ 
aDI s z,(e’) G,,(e, e’) de’ -- tl(e)=O 

aD2 2 
(3.5a) 

I T,(e’) G,,(e, e’) de’ + 
aDl P t,(e’) G&e, e’) de’ + - TAe) = o 

2 
(3Sb) 

dD2 

Here 
G,,(e, e’) = -K,Je’, e) (3.6) 

and T is related to a source distribution c by r = OS,, where s is the arclength. 
The solution 4 may now be calculated as follows. The solution to (3.5) yields r1 

and r2, which are substituted into (3.4) so that A may be calculated. Thus (3.3) 
may be solved for p, and pcL2 and 4 may be evaluated from (3.1). 

There remains the question of how to compute the solutions to (3.3) and (3.5). 
The observation has already been made that 1= 1 is an eigenvalue to the 
homogeneous equations associated with (3.3). There is also an eigenvalue I= -1 
with p1 = C, pz = -C, which corresponds to a potential distribution 4 = 0 in D, 
and D, and 4 = C in D2. Unfortunately the eigenvalue A = -1 affects the iteration 
scheme that arises naturally by the generalisation of (2.16). Since all other eigen- 
values satisfy 111 > 1 (see Kellogg, 1929), the eigenvalues I= +l are the only ones 
that prevent convergence of the iteration scheme. Thus the modified iteration 
scheme, 

where 

PI”+ l)(e) = T,W), &9(e) - T,W), &))(O) (3.7a) 

pY+ l)(e) = TAP’,“), &9(e) - TAP, &%O) (3.7b) 

TI(PI, M(e) = -2 tD p,(e’) K,,(e, 4 de’ - 2 jaD de’) Kde, 4 de’ 
I 2 

A 
(3.7c) 

+2~,(e)--log{x:(e)+y:(e)}, 271 
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T2(hy h)(e) = 2 6, h(e’) b(e, e’) de’ { + 2 P,, de’) K,,(e, e’) de’ 
t 2 

(3.7d) 

-2i,(e)+~losix:(e)+v:(e)i 

will converge to values of p, and p2 that are shifted by some constant value from 
the correct values. However, the net effect of these shifts is to produce a 
corresponding constant shift in the potential distribution. Normally, such shifts in 
potential are not physically interesting. However, if necessary, it is a relatively sim- 
ple matter to add the appropriate constant to the potential. 

The iteration procedure for finding the eigenfunctions t1 and r2 that correspond 
to 1= 1 must be modified differently since the eigenfunctions r, and rZ that corres- 
pond to ,4 = -1 are not know in general. Instead the eigenvalue 1= -1 is shifted to 
the origin by using the following iteration scheme; 

TV+ l)(e) = Tl(zp), zp))(e)/T, (3.8a) 

$+ l)(e) = Tz(zp), zy))(e)/T, (3.8b) 

where 

Tl(tl, rd(e) = %, Tl(e’) Gll(e, e’) de’ 
I 

+i z2(e’) G,,(e, e’) de’ + zl(e) 
dD2 

T&I, td(e) = -I, rl(e’) G,,(e, 0 de’ 
1 

(3.8~) 

-P z,(e’) Gz2(e, e’) de’ - T*(e) (3.8d) 
dD2 

and T, = maxi, ,, 2 JTj(r’,“), rp))(e)l. The d’ isa d vantage to shifting the eigenvalues is 
that the convergence rate is halved. 

The above iteration method is effectively a Neumann iteration method applied to 
the discrete version of the boundary integral equations. A referee has pointed out 
that a generalized conjugate residual algorithm might significantly improve the con- 
vergence (see Eisenstat el al., 1983). The basic conjugate gradient method was tried 
on the exterior problem with little gain in convergence, but we have not as yet tried 
the improved algorithm. 

Clearly, the numerical implementation of the above procedure demands. reliable 
and accurate evaluation of the integrals. In the next section, a numerical quadrature 
and results for some test cases are presented. 
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IV. NUMERICAL RESULTS 

The design of a numerical quadrature for the integrals in (3.7) and (3.8) depends 
on several factors. Firstly, the kernels Kii and Gii are singular. Secondly, the 
smoothness of the surfaces aD, and aD, and of the boundary values #i and & may 
affect the accuracy. Fortunately, for applications to studies of free surface flows, the 
surfaces and boundary values are generically C” functions. Furthermore, for closed 
surfaces in two dimensions, the singularities in Kj and Gjj may be removed by using 
the identity 

P KJe, e’) de’ = 4. (4.1) 
aDI 

Thus the integrals in (3.7) may be replaced by 

-2 IaD {pp)(e’) -p(;)(e)} K,,(e, e’) de’ --&j(e) 
I 

- 2 IaD ,@)(e’) KJe, e’) de’ 
2 

(4.2a) 

and 

2 6, { u$“)(e’) -&j(e)} Kzz(e, e’) de’ + p&“)(e) 
* 

+ 2 fdD &‘)(e’) K,,(e, e’) de’. (4.2b) 
I 

These integrals have smooth, periodic integrands and may thus be evaluated 
accurately by the trapezoidal rule. Indeed, the accuracy is infinite order or spectral 
(Isaacson and Keller, 1966). Similarly, the integrals in (3.8) may be replaced by 

J {zy)(e’) G,,(e, e’) - TV)(e) K,,(e, e’)} de’ + iz(l”)(e) 
dDI 

+I 
$)(e’) G,,(e, e’) de’, 

JD2 

I {Q)(e’) G&e, e’) -$)(e) K,,(e, e’)} de’ - fr$“)(e) aD2 

-I $‘)(e’) G,,(e, e’) de’. 
JD! 

(4.3a) 

(4.3b) 

The trapezoidal rule is applied as follows. N, points are selected at evenly spaced 
intervals in e to represent surface aD,. At each such point, ej say, in (3.7) and (3.8) 
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as modified by (4.2) and (4.3), T,(&), &))(ei) must be calculated. One integral 
involves contributions from the other surface and the trapezoidal rule may be 
applied directly. For the integral along i?D, however, application of the trapezoidal 
rule would require evaluation of the integrand at e’ = ej which is an indeterminant 
form. The limiting value is easily calculated but involves derivatives of the dipole 
sheet strength and the surface. Instead, it is more convenient to apply the 
trapezoidal rule on alternate points so that e’ = ek for all k such that k + j is odd. 
Clearly, a quadrature point never falls on e and the integrand is always easily com- 
puted. A disadvantage to this procedure is a slight loss of resolution of the 
integrand. Tests will show that this is not important in most cases. 

As a simple test, consider the annulus lying between the circles defined by 

xl = R, cos(e), y, = R, sin(e), (4.4a) 

and 
x2 = R2 cos(e), y, = R, sin(e), (4.4b) 

where RI and R, are constants. A solution to Laplace’s equation in polar co- 
ordinates (I, 6) in the annulus is 

which takes on the values 

d,(e) = (1 - (I)“) cos(me) + log(R,) 

$2(e)=((2)m-1) cos(me)+log(R,) 

on the boundaries aD, and aD,, respectively. The exact values for the dipole sheet 
strengths such that p,(O) = ~~(0) = 0 are 

p,(e) = p2(e) = 2[cos(me) - 1-J. (4.7) 

For this simple test case, the error involved in using trapezoidal quadrature can 
be calculated exactly. The following sums 

ijh (4.8a) 
k+Jodd 

N-l 

Re R,euh c 
cos(kmh) 1 RIPIRN-ITZ+RN-IXR~H 

1 2 

k=O R,e”h-R2eikh R;Y-R> 
2 cos( jmh), m#O 

R;Y 
R; - R;’ 

m = 0, (4.8b) 
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where h = 27clN and 0 <m < N/2 give the trapezoidal approximation to the various 
integrals in (3.5), where N evenly spaced points have been used to represent each 
surface. The sum (4.8a), which approximates the principal-value integrals, gives the 
exact analytic result, reflecting the spectral accuracy of the trapezoidal rule. Thus 
the only errors arise from the sums (4.8b) that approximate the integrals along the 
surface opposite to the one containing the field point, (xi(e), yj(e)), in Kj,Je, e’) in 
(3.2). 

The eigenvectors for the discrete equations that represent (3.5) are proportional 
to cos(mjh) and sin(mjh). In particular, for m = 0, the eigenvalue, which 
corresponds to A= 1 in the continuous case, is 

(4.9) 

and the numerically calculated eigenvector is zi = 1, r2 = -1, which is exact. When 
these values for ri, r2 are substituted into (3.4) and the trapezoidal rule is used to 
compute the integrals in (3.4), the numerically determined value for A is also exact, 
that isA=l. 

Next, the error in solving (3.3) can be computed. The following sums, 

(4.10a) 

k+jodd 

1 RIWRN-IH + RN-wIRI?I 
1 2 

R;-Ri 
’ cos( jmh), m#O 

(4.10b) 

give the trapezoidal approximation for the various integrals in (3.3). Once again, 
(4.10a) implies that the principal-value integrals are computed exactly and errors 
come only from the approximation to the other integrals. It is a straightforward 
calculation to find the numerically determined dipole sheet strengths, 

where 

p1=(2+E)(cos(jmh)-1) (4.1 la) 

p2 = (2 + E)(cos( jmh) - 1) (4.1 lb) 

E= 3P” + P -7 
pN-pN-m-pm- 1’ (4.12) 

and p = RI/R,. 
A numerical code has been written that solves the Dirichlet problem for a general 

annulus (not necessarily circular). In particular, the code was applied to the test 



MULTI-CONNECTED DOMAINS 123 

case described above. Results are shown in Table I when R, = 2, R, = 1, and 
N, = N, = N points are used. The reported error E is the maximum absolute dif- 
ference between the computed dipole strengths and the exact values given in (4.7); 
theoretically this error should be 2 IEl and the agreement is perfect as long as the 
error is above the absolute tolerance of lo-l2 used to determine convergence of the 
iteration scheme. Also tabulated are the number of iterations Z, and Z, required to 
solve the integral equations for rj and pji, respectively, to within the absolute 
tolerance. We emphasize that the error arises solely from the numerical 
approximation to the integral that determines the contribution to the field point on 
one surface from the dipole distribution along the other surface. For m = 1, there is 
a dramatic improvement in accuracy as N increases reflecting the infinite order of 
the trapezoidal rule on periodic integrands. Already, for N= 64 the error is below 
the tolerance required. Of course, this result is not too surprising since a circular 
annulus has been chosen, but later results will be represented for elliptic annuli that 
still show the high accuracy of the method. As the mode number m of the potential 
is increased with fixed N, the resolution of the integrand deteriorates but even for 
m = 15, the error is quite small. Incidentally, the mode m = 16 cannot be resolved 
by the numerical quadrature since alternate points were used so m = 15 is the 
highest mode realistically treated by the quadrature. The maximum number of 
iterations required occurs when m = 1 and the number decreases for larger values of 
m, consistent with other iterative, numerical techniques used to solve elliptic 
problems. Clearly, multi-grid techniques may be used to reduce strongly the 
required number of iterations, but we have not pursued that aspect here. The 
numerically calculated value for the source strength A was always within roundoff 
error of its exact value. 

Unfortunately there are times when straightforward use of the numerical 
procedure described above will result in errors of O(1). From (4.12), it is easy to see 
that E is O(1) when R, and R, are very close together. Figure 2 displays the 
behavior of E as the width of the circular annulus is decreased in the test case (4.4t 

TABLE I 

Results for the Circular Annulus as Described in the 
Test. I, = 2 in all Cases 

N M Error I, 

16 1 0.305 x 10 - 3 26 
32 1 0.466 x 1O-8 26 
64 1 0.117 x 10-I’ 26 
32 2 0.528 x 1O-8 14 
32 4 0.160 x lo-’ 8 
32 8 0.239 x 10 -6 5 
32 12 0.382 x 1O-5 4 
32 15 0.305 x 1o-4 3 
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FIG. 2. The maximum of the absolute error E in dipole sheet strength for the circular annulus as D 
is varied, where D is the thickness of the annulus. 

(4.6). Here RI = 1 + D, R2 = 1, m = 1, N, = N, = N, and an absolute tolerance of 
10-l* was used for the convergence of the iterations, (3.7) and (3.8). Clearly for a 
fixed number of discretisation points N, the strong variation in the integrand Kjk, 
j # k, is not well resolved when a point on one surface is close to the surface along 
which the integral is performed. The error begins to downgrade noticeably when the 
thickness D of the annulus is sufficiently small. This error has been previously 
observed by Maskew (1977) in a related calculation involving vortex sheet motion. 
Clearly, as Maskew points out, more points are required to resolve the strong 
variation of the integrand, and as N is increased for fixed D accuracy improves 
dramatically. 

Increasing N substantially for accuracy when D is small is expensive and 
unnecessary. Consider a point (xice,, yj(,,) near surface k. The integrand Kj,Je, e’) 
has a sharp peak or trough centered around eb, defined by the requirement that 
(x,(e&), y,Jeb)) is the closest point on surface k to (xi(e), yj(e)). Figure 3 gives a 
schematic of the situation. The value eb may be found by using interpolation and 
Newton iteration to locate the minimum distance. To resolve the peak or trough, N 
points are interpolated along the surface in the following way. Given that points 
(x,(e’), y,(e’)) are originally assigned by evenly space intervals in e’, N new points 
are obtained by taking evenly space intervals in &, where 

e’=g+a sin(6-eb) (4.13) 
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interpolated points 

fv original points 

FIG. 3. Schematic showing notation for regions where the annulus is thin. 

and P = eb gives one of the new points. The trapezoidal rule is used with the new 
points; quantities such as r and ,u are also interpolated to be able to evaluate the 
integrand. Note that the same number of points N are used. Clearly, the choice of a 
will dictate the accuracy. Note that interpolation must be done whenever a point on 
thejth surface is too close to the kth surface. 

The error i? for the circular case may be analysed in more general terms to 
estimate its behavior for other geometries. For large N, the error J!? is most strongly 
affected by the term p-“‘, provided p # 1. When j= 1 and k = 2, the error is 
associated with the approximation to the integral involving K,,(e, e’). Set Rz = R 
and R, = R + D. Then, 

P -N=(l +D/R)-N 

=exp(-Nlog(1 +D/R)) 

x exp( - ZnD/AS( 1 + D/2R)), (4.14) 

where the quantity AS is the arc length between points and so N AS = 27rR. The 
result in (4.14) is obtained by rewriting D/R = 2rcDfN AS and considering D/AS 
fixed for large N. The approximation Z/( 1 + Z/2) to log( 1 + Z) is used rather than 
Z(l -Z/2). We found that this modification gave better agreement with the 
numerical results reported later. 

For the other case, j=2 and k=l; set R,=R, Rz=R-D and NAS=2aR,. 
Now, 

P -N=(1-D/R)+Nxexp(-2nD/(AS(1-D/2R))). (4.15) 

The factors 1) D/2R in (4.14) and (4.15) are curvature (~1 = l/R corrections to the 
expression exp( -2aD/AS) which describes the influence of the error as a field point 
approaches a flat surface containing a dipole distribution (the error for this case is 
also easily calculated). In general, the correction can be written as 1 + D [ICI/~, 
1 -D /k//2 depending upon whether the region of the surface nearest the point 
appears convex (see Fig. 2) or concave, respectively. In Fig. 4, we replot the error as 
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FIG. 4. The same as Fig. 2 except D is scaled by dS( 1 -D 1~1/2), where the local arclength between 
points, AS, and K are measured on the outer boundary. 

a function of D/(dS( 1 -D /~1/2)), where AS and K is determined on the outer sur- 
face. Clearly, the asymptotic form (4.15) while not strictly valid for all values of D, 
does capture the essential behavior of E. 

To decrease the error, the local ds between the new, interpolated points should 
be given by 

(4.16) 

where C is a constant chosen by experimentation to give the required accuracy. 
From (4.13), it is easy to determine the new ds in terms of a, 

ds=AS(l +a). (4.17) 

Consequently, a has the form 

(4.18) 

In Fig. 5, the error is shown as D is varied for the same test case as shown in 
Fig. 2, but now interpolated points are used whenever a > 0 in (4.18). Interpolation 
was done using a discrete Fourier representation for which C = 9.0 was found to be 
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FIG. 5. The maximum of the absolute error E in dipole sheet strength for the circular annulus as a 
function of D when Fourier interpolation is used to redistribute quadrature points. 

a good choice. For small D, the errors are essentially the same as for larger D 
except for extremely small values of D when the interpolated points are all clustered 
near e, and there are effectively no points resolving the rest of the surface. This 
effect clearly depends on IV. 

In some cases, such as a “noisy” representation of the surface, Fourier inter- 
polation is inappropriate. In such cases, cubic spline interpolation may be used and 
we show the results in Fig. 6. Because of the errors involved in using cubic splines, 
the error can be no better than O(de4). Thus there is a transition from spectral 
accuracy to O(de4) as D becomes small and interpolated points are used. For this 
case, C = 6.0 since the accuracy is limited and there is no point in using interpolated 
points for a large value of C. 

Finally, we demonstrate that these results are not special to a circular annulus 
but hold true for generally shaped annuli. Take the boundaries of the annuli to be 
the following ellipses: 

x1 = r cos(e) (4.19a) 

y, = (r* - i)l’* sin(e) 9 (4.19b) 

and 

x* = cos(e) 

y2 = 4 sin(e). 

(4.20a) 

(4.20b) 
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FIG. 6. The same as Fig. 5, except cubic spline interpolation is used. 

Our tests keep the inner boundary fixed and vary the outer boundary by changing 
r. The conformal map, 

x+iy=- J’cosh(c+ iv) 3 (4.21) 

transforms the elliptic annulus into a circular one and so an exact solution for the 
Dirichlet problem can be found. In particular, we chose the boundary conditions, 

#1 = (~1 cosh(25,) + /? sinh(2[,)) cos(2e) 

qb2 = ($2 + i/?) cos(2e), 

(4.22a) 

(4.22b) 

where 

a= -/I--p,/(cosh(21:,)+sinh(2[,)) 

/j= -$j2 

cosh(i,) =z 
fi 

sinh(i,) = (4r2/3 - 1)‘/2 

(4.23a) 

(4.23b) 

(4.23~) 

(4.23d) 
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and the corresponding dipole strengths are 

/IL1 =/I1 cos(2e) (4.24a) 

p2 = ji2 cos(2e). (4.24b) 

First, results are shown in Fig. 7 for the elliptic annulus without the use of inter- 
polated points. Here, D was chosen as the minimum thickness of the annulus. The 
pattern of results is similar to Fig. 1. Next, we replot the error in Fig. 8 as a 
function of D/(AS( 1 -D JrcI /2)), where the local As and K are measured on the 
outer surface and find that the error behavior is again well described by (4.15). 
Finally, in Figs 9 and 10, results are given when interpolated points are used, 
Fourier and cubic spline interpolation being used, respectively. 

The relative merits of using Fourier and cubic spline interpolation hinge upon 
accuracy versus cost. Our approach is to use a fixed number of quadrature points, 
hence the added cost is determined by the type of interpolation used. For 
illustrative purposes, we chose two disparate types of interpolation: discrete Fourier 
and periodic cubic splines. While the Fourier interpolation is spectrally accurate, 
each interpolation involves a summation, and the cost is increased by a factor 
O(N). Fortunately, Fourier interpolation is fully vectorizable, considerably reducing 
the cost. When the surface representation is “noisy,” or the Fourier interpolation 
considered too expensive, periodic cubic splines offer an attractive alternative. The 
error is now at best O(Ae4), but the cost is only increased by a factor O(1). 

FIG. 7. The maximum of the absolute error E in dipole sheet strength for the elliptic annulus as a 
function of D where D is the minimum thickness of the annulus. 
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FIG. 8. The same as Fig. 7 except D is scaled by dS( 1 - D /K( /2), where the local arclength between 
points, dS, and K are measured on the outer boundary at the point of minimum thickness. 

FIG. 9. The maximum of the absolute error E in dipole sheet strength for the elliptic annulus as a 
function of D when Fourier interpolation is used to redistribute quadrature points. 
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FIG. 10. The same as Fig. 9 except cubic spline interpolation is used. 

V. CONCLUSION 

In conclusion, it is possible to solve elliptic problems in multi-connected domains 
with smooth boundaries using iterative boundary integral techniques. High 
accuracy is possible for relatively few boundary points, even when the 
multiconnected region has thin parts. A simple redistribution of points ensures the 
high accuracy. This technique is now being applied to the study of acceIerating, thin 
fluid shells (Baker, 1983) and of the fluid motion of vortex layers; these results will 
be published elsewhere. 
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